REF5010, REF5020 REF5025, REF5030 REF5040, REF5045, REF5050 www.ti.com # Low-Noise, Very Low Drift, Precision **VOLTAGE REFERENCE** #### **FEATURES** LOW TEMPERATURE DRIFT: High-Grade: 3ppm/°C (max) Standard-Grade: 8ppm/°C (max) **HIGH ACCURACY:** High-Grade: 0.05% (max) Standard-Grade: 0.1% (max) LOW NOISE: 3µVpp/V HIGH OUTPUT CURRENT: ±10mA TEMPERATURE RANGE: -40°C to +125°C #### **APPLICATIONS** - **16-BIT DATA ACQUISITION SYSTEMS** - ATE EQUIPMENT - INDUSTRIAL PROCESS CONTROL - MEDICAL INSTRUMENTATION - **OPTICAL CONTROL SYSTEMS** - PRECISION INSTRUMENTATION #### DESCRIPTION The REF50xx is a family of low-noise, low-drift, very high precision voltage references. These references are capable of both sinking and sourcing, and are very robust with regard to line and load changes. Excellent temperature drift (3ppm/°C) and high accuracy (0.05%) are achieved using proprietary design techniques. These features, combined with very-low noise make the REF50xx family ideal for use in high-precision data acquisition systems. Each reference voltage is available in both standardand high-grade versions. They are offered in MSOP-8 and SO-8 packages, and are specified from -40°C to +125°C. #### **REF50xx Family** | MODEL | OUTPUT VOLTAGE | |---------|----------------| | REF5020 | 2.048V | | REF5025 | 2.5V | | REF5030 | 3.0V | | REF5040 | 4.096V | | REF5045 | 4.5V | | REF5050 | 5.0V | | REF5010 | 10.0V | NOTES: (1) DNC = Do not connect. (2) NC = No internal connection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SBOS410D-JUNE 2007-REVISED APRIL 2009 www.ti.com **INSTRUMENTS** This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### PACKAGE/ORDERING INFORMATION(1) | PRODUCT | OUTPUT VOLTAGE | PACKAGE-LEAD | PACKAGE DESIGNATOR | PACKAGE MARKING | | | |-----------------------------|----------------|--------------|--------------------|---|--|--| | STANDARD GRADE (8ppm, 0.1%) | | • | | | | | | REF5020AI | 2.048V | SO-8 | D | REF5020 | | | | REFOUZUAI | 2.048V | MSOP-8 | DGK | R50A | | | | DEFFORM | 0.5)/ | SO-8 | D | REF5025 | | | | REF5025AI | 2.5V | MSOP-8 | DGK | R50B | | | | DELEGGOVI | 2.01/ | SO-8 | D | REF5030 | | | | REF5030AI | 3.0V | MSOP-8 | DGK | REF5020 R50A REF5025 R50B REF5030 R50C REF5040 R50D REF5045 R50E REF5050 R50F REF5010 R50G REF5020 R50A REF5025 R50B REF5030 R50C REF5040 R50C REF5040 R50C REF5045 R50D R50D R50D R50D R50D R50D R50D R50 | | | | DEECOACAL | 4.0001/ | SO-8 | D | REF5040 | | | | REF5040AI | 4.096V | MSOP-8 | DGK | R50D | | | | DEE-04-14 | 4.574 | SO-8 | D | REF5045 | | | | REF5045AI | 4.5V | MSOP-8 | DGK | R50E | | | | DEFECTOAL | 5.01/ | SO-8 | D | REF5050 | | | | REF5050AI | 5.0V | MSOP-8 | DGK | R50F | | | | DEECOAOAI | 40.077 | SO-8 | D | REF5010 | | | | REF5010AI | 10.0V | MSOP-8 | DGK | R50G | | | | HIGH GRADE (3ppm, 0.05%) | | | | 1 | | | | DEELOOOI | 0.0401/ | SO-8 | D | REF5020 | | | | REF5020I | 2.048V | MSOP-8 | DGK | R50A | | | | DEECOSI | 0.5)/ | SO-8 | D | REF5025 | | | | REF5025I | 2.5V | MSOP-8 | DGK | R50B | | | | DEELOOOI | 0.01/ | SO-8 | D | REF5030 | | | | REF5030I | 3.0V | MSOP-8 | DGK | R50C | | | | DEE20401 | 4.0001/ | SO-8 | D | REF5040 | | | | REF5040I | 4.096V | MSOP-8 | DGK | R50D | | | | DEECOASI | 4.5\/ | SO-8 | D | REF5045 | | | | REF5045I | 4.5V | MSOP-8 | DGK | R50E | | | | DEFENEN | 5.07 | SO-8 | D | REF5050 | | | | REF5050I | 5.0V | MSOP-8 | DGK | R50F | | | | DEEE0401 | 40.07/ | SO-8 | D | REF5010 | | | | REF5010I | 10.0V | MSOP-8 | DGK | R50G | | | ⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. #### ABSOLUTE MAXIMUM RATINGS(1) | PARAMETER | | REF50xx | UNIT | |-------------------|----------------------------|-------------|------| | Input Voltage | | +18 | V | | Output Short-Circ | uit | 30 | mA | | Operating Tempe | rature Range | -55 to +125 | °C | | Storage Tempera | ture Range | -65 to +150 | °C | | Junction Tempera | ature (T _J max) | +150 | °C | | CCD Dating | Human Body Model (HBM) | 3000 | V | | ESD Rating | Charged Device Model (CDM) | 1000 | V | ⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. #### **ELECTRICAL CHARACTERISTICS: PER DEVICE** **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+125^{\circ}C$. At $T_A = +25^{\circ}C$, $I_{LOAD} = 0$, $C_L = 1\mu F$, and $V_{IN} = (V_{OUT} + 0.2V)$ to 18V, unless otherwise noted. | | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|----------------|--|-------|-------|------|--------------| | | | REF5020 (V _{OUT} = 2.048V) ⁽¹⁾ | | | | | | OUTPUT VOLTAGE | | | | | | | | Output Voltage | V_{OUT} | $2.7V < V_{IN} < 18V$ | | 2.048 | | V | | Initial Accuracy: | High-Grade | | -0.05 | | 0.05 | % | | | Standard-Grade | | -0.1 | | 0.1 | % | | NOISE | | | | | | | | Output Voltage Nois | se | f = 0.1Hz to $10Hz$ | | 6 | | μV_{PP} | | | | REF5025 (V _{OUT} = 2.5V) | | _ | | | | OUTPUT VOLTAGE | E | | | | | | | Output Voltage | V_{OUT} | | | 2.5 | | V | | Initial Accuracy: | High-Grade | | -0.05 | | 0.05 | % | | | Standard-Grade | | -0.1 | | 0.1 | % | | NOISE | | | | | | | | Output Voltage Nois | se | f = 0.1Hz to 10Hz | | 7.5 | | μV_{PP} | | | | REF5030 (V _{OUT} = 3.0V) | | | T. | | | OUTPUT VOLTAGE | | | | | | | | Output Voltage | V_{OUT} | | | 3.0 | | V | | Initial Accuracy: | High-Grade | | -0.05 | | 0.05 | % | | | Standard-Grade | | -0.1 | | 0.1 | % | | NOISE | | | | | | | | Output Voltage Nois | se | f = 0.1Hz to 10Hz | | 9 | | μV_{PP} | | | | REF5040 (V _{OUT} = 4.096V) | | | 1 | | | OUTPUT VOLTAGE | E | | | | | | | Output Voltage | V_{OUT} | | | 4.096 | | V | | Initial Accuracy: | High-Grade | | -0.05 | | 0.05 | % | | | Standard-Grade | | -0.1 | | 0.1 | % | | NOISE | | | | | | | | Output Voltage Nois | se | f = 0.1Hz to 10Hz | | 12 | | μV_{PP} | | | | REF5045 (V _{OUT} = 4.5V) | | | 1 | | | OUTPUT VOLTAGE | | | | | | | | Output Voltage | V_{OUT} | | | 4.5 | | V | | Initial Accuracy: | High-Grade | | -0.05 | | 0.05 | % | | | Standard-Grade | | -0.1 | | 0.1 | % | | NOISE | | | | | | | | Output Voltage Nois | se | f = 0.1Hz to 10Hz | | 13.5 | | μV_{PP} | | | | REF5050 (V _{OUT} = 5.0V) | | | | 1 | | OUTPUT VOLTAGE | | | | | | | | Output Voltage | V_{OUT} | | | 5.0 | | V | | Initial Accuracy: | High-Grade | | -0.05 | | 0.05 | % | | | Standard-Grade | | -0.1 | | 0.1 | % | | NOISE | | | | | | | | Output Voltage Nois | se | f = 0.1Hz to 10Hz | | 15 | | μV_{PP} | | | | REF5010 (V _{OUT} = 10.0V) | | | 1 | 1 | | OUTPUT VOLTAGE | | | | | | | | Output Voltage | V_{OUT} | | | 10.0 | | V | | Initial Accuracy: | High-Grade | | -0.05 | | 0.05 | % | | | Standard-Grade | | -0.1 | | 0.1 | % | | NOISE | | | | | | | | Output Voltage Nois | se | f = 0.1Hz to $10Hz$ | | 30 | 1 | μV_{PP} | ⁽¹⁾ For $V_{OUT} \le 2.5V$, the minimum supply voltage is 2.7V. #### **ELECTRICAL CHARACTERISTICS: ALL DEVICES** **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +125°C. At $T_A = +25^{\circ}C$, $I_{LOAD} = 0$, $C_L = 1\mu F$, and $V_{IN} = (V_{OUT} + 0.2V)$ to 18V, unless otherwise noted. | | | | F | REF50xx | | | |----------------------------------|-----------------------|---------------------------------|-----------------------|---------|------|--------| | PARAMETER | | CONDITIONS | MIN | TYP | MAX | UNIT | | OUTPUT VOLTAGE TEMPERATURE | DRIFT | | | | | | | Output Voltage Temperature Drift | dV _{OUT} /dT | | | | | | | High-Grade | | | | 2.5 | 3 | ppm/°C | | Standard-Grade | | | | 3 | 8 | ppm/°C | | LINE REGULATION | | | | | | | | Line Regulation | dV_{OUT}/dV_{IN} | | | | | | | REF5020 ⁽¹⁾ Only | | $V_{IN} = 2.7V \text{ to } 18V$ | | 0.1 | 1 | ppm/V | | All Other Devices | | $V_{IN} = V_{OUT} + 0.2V$ | | 0.1 | 1 | ppm/V | | Over Temperature | | | | 0.2 | 1 | ppm/V | | LOAD REGULATION | | | | | | | | Load Regulation | dV_{OUT}/dI_{LOAD} | -10 mA $< I_{LOAD} < +10$ mA | | | | | | REF5020 Only | | $V_{IN} = 3V$ | | 20 | 30 | ppm/mA | | All Other Devices | | $V_{IN} = V_{OUT} + 0.75V$ | | 20 | 30 | ppm/mA | | Over Temperature | | | | | 50 | ppm/mA | | SHORT-CIRCUIT CURRENT | | | | | | | | Short-Circuit Current | I _{SC} | $V_{OUT} = 0$ | | 25 | | mA | | TEMP PIN | | | | | | | | Voltage Output | | At $T_A = +25$ °C | | 575 | | mV | | Temperature Sensitivity | | | | 2.64 | | mV/°C | | TURN-ON SETTLING TIME | | | | | | | | Turn-On Settling Time | | To 0.1% with $C_L = 1\mu F$ | | 200 | | μs | | POWER SUPPLY | | | | | | | | Supply Voltage | Vs | See Note (1) | $V_{OUT} + 0.2^{(1)}$ | | 18 | V | | Quiescent Current | | | | 0.8 | 1 | mA | | Over Temperature | | | | | 1.2 | mA | | TEMPERATURE RANGE | | | | | | | | Specified Range | | | -40 | | +125 | °C | | Operating Range | | | -55 | | +125 | °C | | Thermal Resistance | θ_{JA} | | | | | | | MSOP-8 | | | | 150 | | °C/W | | SO-8 | | | | 150 | | °C/W | ⁽¹⁾ For $V_{OUT} \le 2.5V$, the minimal supply voltage is 2.7V. #### TYPICAL CHARACTERISTICS At $T_A = +25^{\circ}C$, $I_{LOAD} = 0$, and $V_S = V_{OUT} + 0.2V$, unless otherwise noted. For $V_{OUT} \le 2.5V$, the minimum supply voltage is 2.7V. Figure 1. . igaio o Figure 2. Figure 4. #### TYPICAL CHARACTERISTICS (continued) At $T_A = +25$ °C, $I_{LOAD} = 0$, and $V_S = V_{OUT} + 0.2V$, unless otherwise noted. For $V_{OUT} \le 2.5V$, the minimum supply voltage is 2.7V. #### TYPICAL CHARACTERISTICS (continued) At $T_A = +25$ °C, $I_{LOAD} = 0$, and $V_S = V_{OUT} + 0.2$ V, unless otherwise noted. For $V_{OUT} \le 2.5$ V, the minimum supply voltage is 2.7V. #### **TYPICAL CHARACTERISTICS (continued)** At $T_A = +25$ °C, $I_{LOAD} = 0$, and $V_S = V_{OUT} + 0.2V$, unless otherwise noted. For $V_{OUT} \le 2.5V$, the minimum supply voltage is 2.7V. #### APPLICATION INFORMATION The REF50xx is family of low-noise, precision bandgap voltage references that are specifically designed for excellent initial voltage accuracy and drift. Figure 22 shows a simplified block diagram of the REF50xx. Figure 22. REF50xx Simplified Block Diagram #### **BASIC CONNECTIONS** Figure 23 shows the typical connections for the REF50xx. A supply bypass capacitor ranging between $1\mu F$ to $10\mu F$ is recommended. A $1\mu F$ to $50\mu F$ output capacitor (C_L) must be connected from V_{OUT} to GND. The ESR value of C_L must be less than or equal to 1.5Ω to ensure output stability. To minimize noise, the recommended ESR of C_L is between 1Ω and 1.5Ω . Figure 23. Basic Connections #### SUPPLY VOLTAGE The REF50xx family of voltage references features extremely low dropout voltage. With the exception of the REF5020, which has a minimum supply requirement of 2.7V, these references can be operated with a supply of 200mV above the output voltage in an unloaded condition. For loaded conditions, a typical dropout voltage versus load plot is shown in Figure 6 of the Typical Characteristics. # OUTPUT ADJUSTMENT USING THE TRIM/NR PIN The REF50xx provides a very accurate, factory-trimmed voltage output. However, V_{OUT} can be adjusted using the trim and noise reduction pin (TRIM/NR, pin 5). Figure 24 shows a typical circuit that allows an output adjustment of ± 15 mV Figure 24. V_{OUT} Adjustment Using the TRIM/NR Pin The REF50xx allows access to the bandgap through the TRIM/NR pin. Placing a capacitor from the TRIM/NR pin to GND (as Figure 25 illustrates) in combination with the internal R_3 and R_4 resistors creates a low-pass filter. A capacitance of $1\mu F$ creates a low-pass filter with the corner frequency between 10Hz and 20Hz. Such a filter decreases the overall noise measured on the V_{OUT} pin by half. Higher capacitance results in a lower filter cutoff frequency, further reducing output noise. Note that use of this capacitor increases startup time. Figure 25. Noise Reduction Using the TRIM/NR Pin www.ti.com #### **TEMPERATURE DRIFT** The REF50xx is designed for minimal drift error, which is defined as the change in output voltage over temperature. The drift is calculated using the box method, as described by the following equation: Drift = $$\left(\frac{V_{OUTMAX} - V_{OUTMIN}}{V_{OUT} \times Temp Range}\right) \times 10^{6} (ppm)$$ (1) The REF50xx features a maximum drift coefficient of 3ppm/°C for the high-grade version, and 8ppm/°C for the standard-grade. #### **TEMPERATURE MONITORING** The temperature output terminal (TEMP, pin 3) provides a temperature-dependent voltage output with approximately $60k\Omega$ source impedance. As seen in Figure 8, the output voltage follows the nominal relationship: $$V_{TEMP\ PIN} = 509mV + 2.64 \times T(^{\circ}C)$$ This pin indicates general chip temperature, accurate to approximately ±15°C. Although it is not generally suitable for accurate temperature measurements, it can be used to indicate temperature changes or for temperature compensation of analog circuitry. A temperature change of 30°C corresponds to an approximate 79mV change in voltage at the TEMP pin. The TEMP pin has high output impedance (see Figure 22). Loading this pin with a low-impedance circuit induces a measurement error; however, it does not have any effect on V_{OUT} accuracy. To avoid errors caused by low-impedance loading, buffer the TEMP pin output with a suitable low-temperature drift op amp, such as the OPA333, OPA335, or OPA376, as shown in Figure 26. Figure 26. Buffering the TEMP Pin Output #### POWER DISSIPATION The REF50xx family is specified to deliver current loads of ±10mA over the specified input voltage range. The temperature of the device increases according to the equation: $$T_J = T_A + P_D \times \theta_{JA}$$ Where: $T_J = Junction temperature (°C)$ T_A = Ambient temperature (°C) P_D = Power dissipated (W) θ_{JA} = Junction-to-ambient thermal resistance (°C/W) The REF50xx junction temperature must not exceed the absolute maximum rating of +150°C. #### **NOISE PERFORMANCE** Typical 0.1Hz to 10Hz voltage noise for each member of the REF50xx family is specified in the *Electrical Characteristics: Per Device* table. The noise voltage increases with output voltage and operating temperature. Additional filtering can be used to improve output noise levels, although care should be taken to ensure the output impedance does not degrade performance. #### **APPLICATION CIRCUITS** #### **NEGATIVE REFERENCE VOLTAGE** For applications requiring a negative and positive reference voltage, the REF50xx and OPA735 can be used to provide a dual-supply reference from a 5V supply. Figure 27 shows the REF5025 used to provide a 2.5V supply reference voltage. The low drift performance of the REF50xx complements the low offset voltage and zero drift of the OPA735 to provide an accurate solution for split-supply applications. Care must be taken to match the temperature coefficients of $R_{\rm 1}$ and $R_{\rm 2}$. Figure 27. The REF5025 and OPA735 Create Positive and Negative Reference Voltages #### DATA ACQUISITION Data acquisition systems often require stable voltage references to maintain accuracy. The REF50xx family features low noise, very low drift, and high initial accuracy for high-performance data converters. Figure 28 shows the REF5040 in a basic data acquisition system. Figure 28. Basic Data Acquisition System SBOS410D-JUNE 2007-REVISED APRIL 2009 # **Revision History** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | C | hanges from Revision C (December, 2008) to Revision D | Page | |---|---|------| | • | Removed all notes regarding MSOP-8 package status. MSOP-8 package released at time of document revision | 1 | | • | Changed Storage Temperature Range absolute minimum value from -55°C to -65°C | 2 | | • | Added test condition to Line Regulation, All other devices specification | 4 | | • | Added Load Regulation test condition and Over Temperature specifications | 4 | | • | Added typical characteristic graph, Quiescent Current vs Input Voltage (Figure 10) | 6 | #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | REF5010AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5010AIDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5010AIDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5010AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5010ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5010IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5010IDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5010IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020AIDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020AIDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020AIDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020AIDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples (Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|--------------------------| | REF5020IDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5020IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025AIDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025AIDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025AIDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025AIDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025IDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5025IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030AIDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030AIDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | REF5030AIDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030AIDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030IDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5030IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040AIDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040AIDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040AIDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040AIDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | REF5040IDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5040IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045AIDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045AIDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045AIDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045AIDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045IDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5045IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050AIDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050AIDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | REF5050AIDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050AIDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050AIDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050IDGKT | ACTIVE | MSOP | DGK | 8 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | | REF5050IDRG4 | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-2-260C-1 YEAR | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. #### **PACKAGE OPTION ADDENDUM** 16-Jul-2011 **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF REF5020, REF5025, REF5040, REF5050: Enhanced Product: REF5020-EP, REF5025-EP, REF5040-EP, REF5050-EP NOTE: Qualified Version Definitions: • Enhanced Product - Supports Defense, Aerospace and Medical Applications **PACKAGE MATERIALS INFORMATION** www.ti.com 18-May-2011 #### TAPE AND REEL INFORMATION # TAPE DIMENSIONS KO P1 BO W Cavity A0 | | A0 | Dimension designed to accommodate the component width | |---|----|---| | Γ | B0 | Dimension designed to accommodate the component length | | | K0 | Dimension designed to accommodate the component thickness | | | W | Overall width of the carrier tape | | Г | D1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE *All dimensions are nominal | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | REF5010AIDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5010AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5010IDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5010IDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5010IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5020AIDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5020AIDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5020AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5020IDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5020IDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5020IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5025AIDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5025AIDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5025AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5025IDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5025IDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5025IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5030AIDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 18-May-2011 | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | REF5030AIDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5030AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5030IDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5030IDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5030IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5040AIDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5040AIDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5040AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5040IDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5040IDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5040IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5045AIDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5045AIDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5045AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5045IDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5045IDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5045IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5050AIDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5050AIDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | REF5050IDGKR | MSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5050IDGKT | MSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | REF5050IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | www.ti.com 18-May-2011 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | REF5010AIDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5010AIDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5010IDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5010IDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5010IDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5020AIDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5020AIDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5020AIDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5020IDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5020IDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5020IDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5025AIDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5025AIDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5025AIDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5025IDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5025IDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5025IDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5030AIDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5030AIDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5030AIDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 18-May-2011 | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | REF5030IDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5030IDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5030IDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5040AIDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5040AIDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5040AIDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5040IDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5040IDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5040IDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5045AIDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5045AIDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5045AIDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5045IDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5045IDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5045IDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5050AIDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5050AIDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5050IDGKR | MSOP | DGK | 8 | 2500 | 346.0 | 346.0 | 29.0 | | REF5050IDGKT | MSOP | DGK | 8 | 250 | 190.5 | 212.7 | 31.8 | | REF5050IDR | SOIC | D | 8 | 2500 | 346.0 | 346.0 | 29.0 | # DGK (S-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end. - Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - E. Falls within JEDEC MO-187 variation AA, except interlead flash. # D (R-PDSO-G8) #### PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. # D (R-PDSO-G8) ### PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |-----------------------------|------------------------|----------------------------------|-----------------------------------| | Audio | www.ti.com/audio | Communications and Telecom | www.ti.com/communications | | Amplifiers | amplifier.ti.com | Computers and Peripherals | www.ti.com/computers | | Data Converters | dataconverter.ti.com | Consumer Electronics | www.ti.com/consumer-apps | | DLP® Products | www.dlp.com | Energy and Lighting | www.ti.com/energy | | DSP | dsp.ti.com | Industrial | www.ti.com/industrial | | Clocks and Timers | www.ti.com/clocks | Medical | www.ti.com/medical | | Interface | interface.ti.com | Security | www.ti.com/security | | Logic | logic.ti.com | Space, Avionics and Defense | www.ti.com/space-avionics-defense | | Power Mgmt | power.ti.com | Transportation and
Automotive | www.ti.com/automotive | | Microcontrollers | microcontroller.ti.com | Video and Imaging | www.ti.com/video | | RFID | www.ti-rfid.com | Wireless | www.ti.com/wireless-apps | | RF/IF and ZigBee® Solutions | www.ti.com/lprf | | | **TI E2E Community Home Page** Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated e2e.ti.com